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Abstract

We explore the degree to which concepts developed in statistical physics can
be usefully applied to physiological signals. We illustrate the problems related
to physiologic signal analysis with representative examples of human heart-
beat dynamics under healthy and pathologic conditions. We first review re-
cent progress based on two analysis methods, power spectrum and detrended
fluctuation analysis, used to quantify long-range power-law correlations in
noisy heartbeat fluctuations. The finding of power-law correlations indicates
presence of scale-invariant, fractal structures in the human heartbeat. These
fractal structures are represented by self-affine cascades of beat-to-beat fluc-
tuations revealed by wavelet decomposition at different time scales. We then
describe very recent work that quantifies multifractal features in these cas-
cades, and the discovery that the multifractal structure of healthy dynamics
is lost with congestive heart failure. The analytic tools we discuss may be

used on a wide range of physiologic signals.
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Physiologic signals are generated by complex self-regulating systems that pro-
cess inputs with a broad range of characteristics [1-3]. Many physiological time
series are extremely inhomogeneous and nonstationary, fluctuating in an irregu-
lar and complex manner. An important question is whether the “heterogeneous”
structure of physiologic time series arises trivially from external and intrinsic
perturbations which push the system away from a homeostatic set point. An
alternative hypothesis is that the fluctuations are, at least in part, due to the
underlying dynamics of the system. The key problem is how to decompose sub-
tle fluctuations (due to intrinsic physiologic control) from other nonstationary
trends associated with external stimuli. Till recently, the analysis of the fractal
properties of such fluctuations has been restricted to second order linear charac-
teristics such as the power spectrum and the two-point autocorrelation function.
These analyses reveal that the fractal behavior of healthy, free-running physiolog-
ical systems is often characterized by 1/f-like scaling of the power spectra [4-8].
Monofractal signals, however, are homogeneous and have “linear” properties.
Many physiologic time series—such as heartbeat interval sequences—are in fact
inhomogeneous, suggesting that different parts of the signal have different scal-
ing properties. In addition, there is evidence that heartbeat dynamics exhibits
nonlinear properties [9—15]. Such features are often associated with multifractal
behavior. Up to now, robust demonstration of multifractality for nonstationary
time series has been hampered by problems related to a drastic bias in the esti-
mate of the singularity spectrum due to diverging negative moments. Moreover,
the classical approaches based on the box-counting technique and structure func-
tion formalism fail when a fractal function is composed of a multifractal singular
part embedded in regular polynomial behavior [16]. By means of a wavelet-
based multifractal formalism, we show that healthy human heartbeat dynamics
exhibits even higher complexity (than previously expected from the finding of

fractal 1/f scaling) which is characterized by a broad multifractal spectrum [17].
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I. INTRODUCTION

In recent years the study of the statistical properties of heartbeat interval sequences has
attracted the attention of researchers from different fields [18-22]. Analysis has focused ex-
tensively on interbeat interval variability as an important quantity to help elucidate possibly
nonhomeostatic physiologic variability because: (i) the heart rate is under direct neuroau-
tonomic control, (ii) interbeat interval variability is readily measured by noninvasive means,
and (iii) analysis of these heart rate dynamics may provide important practical diagnostic
and prognostic information. Figure 1 shows a cardiac interbeat time series — the output
of a spatially and temporally integrated neuroautonomic control system. The time series
shows “erratic” fluctuations and “patchiness”. These fluctuations are usually ignored in
conventional studies which focus on averaged quantities. In fact, these fluctuations are often
labeled as “noise” to distinguish them from the true “signal” of interest. Generally, in the
conventional approach it is assumed that there is no meaningful structure in apparent noise
and, therefore, one does not expect to gain any understanding about the underlying system
through the study of these fluctuations. However, by adapting and extending methods de-
veloped in modern statistical physics and nonlinear dynamics, we find that the physiologic
fluctuations shown in Fig. 1 exhibit an unexpected hidden scaling structure [6,13,17,23-25].
Furthermore, the dynamical patterns of these fluctuations and the associated scaling fea-
tures change with pathological perturbations. These findings raise the possibility that un-
derstanding the origin of such temporal structures and their alterations with disease (a) may
elucidate certain basic aspects of heart rate control mechanisms, and (b) may have potential

for clinical monitoring.

II. 1/F FLUCTUATIONS IN HEARTBEAT DYNAMICS

A quantity widely used to measure correlations in a time series is the power spectrum,

which measures the relative frequency content of a signal. Fourier and related power spec-



trum analysis have proved particularly useful for recognizing the existence and role of charac-
teristic frequencies (time scales) in cardiac dynamics. The analysis of heart beat fluctuations
focused initially on short time oscillations associated with breathing and blood pressure as
well as other control [20,21]. Studies of longer heartbeat records revealed 1/f-like scale-free
behavior [4,5]. A power spectrum calculation assumes that the signal studied is station-
ary [26,27], and when applied to nonstationary time series can lead to misleading results.
However, time series of beat-to-beat (RR) heart rate intervals obtained from digitized elec-
trocardiograms are typically nonstationary and fluctuate in an irregular manner in healthy
subjects, even at rest [Fig. 1b] [28,29]. Because of this property, researchers were faced with
the task to consider only portions of the data and to test these portions for stationarity
before performing power spectrum analysis.

To illustrate the limitations of the power spectrum analysis for nonstationary time series,
we consider 6 hour records (n & 10* beats) of interbeat intervals for a healthy subject during
sleep and wake activity. We show that there is no true 1/f power spectrum for the interbeat
intervals in the real heart. Instead, we find that the power spectrum of the interbeat intervals
has different regimes with different scaling behavior and that the rounded crossover between
the different regimes is the reason why it seems, to first approximation, to scale as 1/f
[Fig. 2].

Recent analyses of very long time series (up to 24h: n = 10° beats) show that under
healthy conditions, interbeat interval increments I(n) exhibit power-law anticorrelations [6].
Since I(n) is stationary, we can apply standard spectral analysis techniques [Fig. 3] and we
show that frue scaling does exist.

The fact that the log-log plot of the power spectrum S;(f) vs. f is linear implies:

Si(f) ~ 7. (2.1)

The exponent [ is related to the mean fluctuation function exponent o by f = 2a — 1
[30,31] and can serve as an indicator of the presence and type of correlations: (i) If § = 0,

there is no correlation in the time series I(n) (“white noise”); (ii) If 0 < 8 < 1, then I(n)
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is correlated such that positive values of I are likely to be close (in time) to each other,
and the same is true for negative I values; (iii) If —1 < 8 < 0, then I(n) is also correlated.
However, the values of I are organized such that positive and negative values are more likely
to alternate in time (“anticorrelation”) [30].

For interbeat interval increments from records of healthy subjects we obtain § ~ —1,
suggesting non-trivial power-law long-range correlations in the heartbeat. Furthermore, the
anti-correlation properties of I indicated by the negative 8 are consistent with a nonlinear
feedback system that “kicks” the heart rate away from extremes [32,33]. This tendency,
however, does not only operate locally on a beat-to-beat basis, but over a wide range of time
scales up to thousands of beats [Fig. 3]. The emergence of such scale-invariant properties in
the seemingly “noisy” heart beat fluctuations is believed to be a result of highly complex,
nonlinear mechanisms of physiologic control [31, 36].

Extracting increments from a time series is only a first step in effectively treating prob-
lems related to nonstationarities. Note that the power spectrum of the increments in the
heartbeat intervals [Fig. 3] does not distinguish between wake and sleep dynamics. One
needs to do better — e.g. by taking into account the presence of polynomial trends in the

times series. We discuss such an approach in the following Section.

III. MONOFRACTAL ANALYSIS: LONG-RANGE ANTICORRELATIONS IN

THE HEARTBEAT FLUCTUATIONS

Recently the detrended fluctuation analysis (DFA) method [37] was introduced to detect
long-range correlations in physiological fluctuations when these are embedded in a seemingly
nonstationary time series. The advantage of the DFA method over conventional methods,
such as power spectrum analysis, is that it avoids the spurious detection of apparent long-
range correlations that are an artifact of nonstationarity related to linear and higher order
polynomial trends in the data. The essence of the DFA method is as follows: the average

root-mean-square fluctuation function F'(n) is obtained after integrating and detrending the



data, i.e., subtracting the local polynomial trend in a box of size n data points. The power-
law relation between F'(n) and the number of data points n in a box indicates the presence
of scaling: the fluctuations can be characterized by a scaling exponent «, a self-similarity
parameter, defined as F'(n) ~ n®. The DFA method has been tested on control time series of
“built-in” long-range correlations with superposition of a nonstationary external trend [38].
It has also been successfully applied to detect long-range correlations in human gait, ion
channel kinetics, and highly heterogeneous DNA sequences [7,8,37,39-41]. Of note is a
recent independent review of fractal fluctuation analysis methods which determined that
DFA was one of the most robust methods [42].

It is known that circadian rhythms are associated with periodic changes in key physio-
logical processes [3,36,44]. Typically the differences in the cardiac dynamics during sleep
and wake phase are reflected in the average and standard deviation of the interbeat inter-
vals [43,44]. Such differences can be systematically observed from plots of the interbeat
intervals recorded from subjects during sleep and wake [Fig. 1]. In recent studies we have
reported on sleep-wake differences in the distributions of the amplitudes of the fluctuations
in the interbeat intervals — a surprising finding indicating higher probability for larger
amplitudes during sleep [13,24,45]. Next, we ask the question if there are characteristic
differences in the scaling behavior between sleep and wake cardiac dynamics. We hypothe-
size that sleep and wake changes in cardiac control may occur on all time scales and thus
could lead to systematic changes in the scaling properties of the heartbeat dynamics. Elu-
cidating the nature of these sleep-wake rhythms could lead to a better understanding of the
neuroautonomic mechanisms of cardiac regulation.

To answer this question we apply the detrended fluctuation analysis (DFA) method. We
analyze 30 datasets — each with 24h of interbeat intervals — from 18 healthy subjects
and 12 patients with congestive heart failure [46]. We analyze the nocturnal and diurnal
fractions of the dataset of each subject, which correspond to the 6h (n ~ 22,000 beats) from
midnight to 6am and noon to 6pm. These periods incorporate the segments with lowest

and highest heart rate in the time series, which we and others found to be the best indirect



marker of sleep [43,44]. We find that at scales above &~ 1min (n > 60) the data during wake
hours display long-range correlations over two decades with average exponents ap ~ 1.05
for the healthy group and ay =~ 1.2 for the heart failure patients. For the sleep data we find
a systematic crossover at scale n ~ 60 beats followed by a scaling regime extending over
two decades characterized by a smaller exponent: ag ~ 0.85 for the healthy and ag ~ 0.95
for the heart failure group [Fig. 4a,c]. Although the values of the sleep and wake exponents
vary from subject to subject, we find that for all individuals studied, the heartbeat dynamics
during sleep are characterized by a smaller exponent [47].

This analysis suggests that the observed sleep-wake scaling differences are due to intrinsic
changes in the cardiac control mechanisms for the following reasons: (i) The DFA method
removes the “trends” in the interbeat interval signal which are due, at least in part, to activ-
ity, and quantifies the fluctuations along the trends. (ii) Responses to external stimuli should
give rise to a different type of fluctuations having characteristic time scales, i.e. frequencies
related to the stimuli. However, fluctuations in both diurnal and nocturnal cardiac dynamics
exhibit scale-free behavior. (iii) The weaker anticorrelated behavior observed for all wake
phase records cannot be simply explained as a superposition of stronger anticorrelated sleep
dynamics and random noise of day activity. Such noise would dominate at large scales and
should lead to a crossover with an exponent of 1.5. However, such crossover behavior is not
observed in any of the wake phase datasets [Fig. 4]. Rather, the wake dynamics are typically
characterized by a stable scaling regime up to n = 5 x 10 beats.

To test the robustness of our results, we analyze 17 datasets from 6 cosmonauts during
long-term orbital flight on the Mir space station under the extreme conditions of zero gravity
and high stress activity [48]. Each dataset contains continuous periods of 6h data under both
sleep and wake conditions. We find that for all cosmonauts the heartbeat interval series
exhibit long-range correlations with scaling exponents consistent with those found for the
healthy terrestrial group: aw = 1.04 for the wake phase and ag ~ 0.82 for the sleep phase.
The values of these exponents indicate that the fluctuations in the interbeat intervals are

anticorrelated for the wake phases and even stronger anticorrelated for the sleep phase. This
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sleep-wake scaling difference is observed not only for the group averaged exponents but for
each individual cosmonaut dataset [Fig. 4b]. Moreover, the scaling differences are persistent
in time, since records of the same cosmonaut taken on different days (ranging from the 3rd
to the 158th day in orbit), exhibit a higher degree of anticorrelation in sleep.

Thus, the larger values for the wake phase scaling exponents observed for healthy subjects
cannot be a trivial artifact of activity. Furthermore, the larger value of the average wake
exponent for the heart failure group compared to the other two groups cannot be attributed
to external stimuli either, since patients with severe cardiac disease are strongly restricted
in their physical activity. We note, however, that the average sleep-wake scaling difference
remains the same (& 0.2) for all three groups. Such sleep-wake changes in the scaling
characteristics may indicate different regimes of intrinsic neuroautonomic regulation of the
cardiac dynamics, which may “switch” on and off in accordance with circadian rhythms. A
very recent study confirms our finding of lower value for the scaling exponent during sleep
and shows that different stages of sleep (e.g. light sleep, deep sleep, rapid eye movement
stages) could be associated with different correlations in the heartbeat fluctuations [49]. The
findings of stronger anticorrelations [47], as well as higher probability for larger heartbeat
fluctuations during sleep [13,24,45] are of interest from a physiological viewpoint, since they
suggest that the observed dynamical characteristics in the heartbeat fluctuations during sleep
and wake phases are related to intrinsic mechanisms of neuroautonomic control, and support
a reassessment of the sleep as a surprisingly active dynamical state. The finding of scaling
features in the human heartbeat and thier change with disease or sleep-wake transition have
motivated new modeling approaches which may lead to better understanding the underlying
control mechanisms of heartrate regulation [33].

Before concluding this Section we note that recent work [34] provides evidence of sur-
prising complexity present in the temporal organization of the heterogeneities (e.g. trends)
in human heartbeat dynamics. Trends in the interbeat interval signal are traditionally asso-
ciated with external stimuli. To probe the temporal organization of such heterogeneities we

introduce a segmentation algorithm [35] and find that the lengths of segments with different
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local mean heart rates follow a power-law distribution. This scale-invariant structure is not
a simple consequence of the long-range correlations present in the heartbeat fluctuations
discussed in this Section. These new findings suggest that relevant physiological informa-
tion may be hidden in the heterogeneities of the heartbeat time series, the understanding of

which remains an open question.

IV. SELF-SIMILAR CASCADES IN THE HEARTBEAT FLUCTUATIONS

Many simple systems in nature have correlation functions that decay with time in an
exponential way. For systems comprised of many interacting subsystems, physicists discov-
ered that such exponential decays typically do not occur. Rather, correlation functions were
found to decay with a power-law form. The implication of this discovery is that in complex
systems, there is no single characteristic time [50-52]. If correlations decay with a power-law
form, we say the system is “scale-free” because there is no characteristic scale associated
with a power law. Since at large time scales a power law is always larger than an exponential
function, correlations described by power laws are termed “long-range” correlations—they
are of longer range than exponentially-decaying correlations.

The findings of long-range power-law correlations [23,47] and the recently reported scaling
in the distributions of heartbeat fluctuations [13,45] (i.e. “data collapse” of the distributions
for different time scales) suggest the absence of a characteristic scale and indicate that the
underlying dynamical mechanisms regulating the healthy heartbeat have statistical proper-
ties which are similar on different time scales. Such statistical self-similarity is an important
characteristic of fractal objects [53]. However, how can this purported fractal structure be
“visualized” in the seemingly erratic and noisy heartbeat fluctuations? The wavelet decom-
position of beat-to-beat heart rate signals can be used to provide a visual representation
of this fractal structure [Fig. 5]. The brighter colors indicate larger values of the wavelet
amplitudes (corresponding to large heartbeat fluctuations) and white tracks represent the

wavelet transform maxima lines. The structure of these maxima lines shows the evolution



of the heartbeat fluctuations with scale and time. The wavelet analysis performed with the
second derivative of the Gaussian (the Mexican hat) as an analyzing wavelet uncovers a hi-
erarchical scale-invariance [Fig. 5 (top panel)], which is characterized by the stability of the
scaling form observed for the distributions and the power-law correlations [13,23,47]. The
plots reveal a self-affine cascade formed by the maxima lines — a magnification of the central
portion of the top panel shows similar branching patterns [Fig. 5 (lower panel)]. Such fractal
cascade results from the interaction of many nonlinearly coupled physiological components,
operating on different scales (polynomial trends due to daily activity are filtered out).
Thus the wavelet transform, with its ability to remove local trends and to extract inter-
beat variations on different time scales, enables us to identify fractal patterns (arches) in the
heartbeat fluctuations even when the signals change as a result of background interference.
Analysis of data from pathologic conditions (e.g. sleep apnea) show a breakdown these pat-
terns [24]. Fractal characteristics of cardiac dynamics and other biological signals can be
usefully studied with the generalized multifractal formalism based on the wavelet transform

modulus maxima method which we discuss in the next Section.

V. MULTIFRACTALITY: NONSTATIONARITY IN LOCAL SCALING

Monofractal signals are homogeneous in the sense that they have the same scaling prop-
erties, characterized locally by a single singularity exponent hg, throughout the entire sig-
nal [52-57]. Therefore monofractal signals can be indexed by a single global exponent—the
Hurst exponent H = hg [58] — which suggests that they are stationary from viewpoint of
their local scaling properties. On the other hand, multifractal signals, can be decomposed
into many subsets —possibly infinitely many— characterized by different local Hurst expo-
nents h, which quantify the local singular behavior and thus relate to the local scaling of the
time series [Fig. 6]. Thus multifractal signals require many exponents to fully characterize
their scaling properties [53,55,57] and are intrinsically more complex, and inhomogeneous,

than monofractals.
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The statistical properties of the different subsets characterized by these different expo-
nents h can be quantified by the function D(h), where D(h,) is the fractal dimension of
the subset of the time series characterized by the local Hurst exponent A, [53,55,57,59-61].
Thus, the multifractal approach for signals, a concept introduced in the context of multi-
affine functions [62,63], has the potential to describe a wide class of signals that are more
complex then those characterized by a single fractal dimension (such as classical 1/f noise).

In a recent study, we establish the relevance of the multifractal formalism for the de-
scription of a physiological signal — the human heartbeat [17]. The motivation for our work
is not merely looking for yet another example of multifractality, this time in the biological
sciences. In fact, if we consider the neuroautonomic control mechanisms responsible for the
generation of heartbeats, it is natural to expect the need for multifractal concepts for their
description, since the heartbeats are a result of the interaction of many physiological compo-
nents operating on different time scales. These interactions are nonlinear and self-regulating
(through feedback control), leading to the nonlinear character of the output signal and to
the heterogeneous features of heartbeat time series.

In contrast, the assumption of heartbeat monofractality —which has been the scope of
studies in the field so far— is unrealistic because the monofractal hypothesis assumes that the
scaling properties of the signal are the same throughout time, and are characterized by the
same local Hurst exponent h [Fig. 7c|]. However, inspection of heartbeat signals shows them
to be heterogeneous and suggests they might require more exponents for their description.
Since the power spectrum and the correlation analysis (DFA method) can measure only one
exponent characterizing a given signal, these methods are more appropriate for the study
of monofractal signals. Moreover, the power spectrum and the correlation analysis reflect
only the linear characteristics, while the heartbeat dynamics exhibits nonlinear properties.
Thus the multifractal analysis may reveal new information on the nature of the nonlinearity
encoded in the Fourier phases [Fig. 12].

The first problem, therefore, is to extract the local value of h. To this end we use

methods derived from wavelet theory [64]. The properties of the wavelet transform make
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wavelet methods attractive for the analysis of complex nonstationary time series such as one
encounters in physiology [13]. In particular, wavelets can remove polynomial trends that
could lead box-counting techniques to fail to quantify the local scaling of the signal [65].
Additionally, the time-frequency localization properties of the wavelets makes them partic-
ularly useful for the task of revealing the underlying hierarchy in the cascade of fluctuations
[Fig. 5] that governs the temporal distribution of the local Hurst exponents. Hence, the
wavelet transform enables a reliable multifractal analysis [65]. As the analyzing wavelet, we
use derivatives of the Gaussian function, which allows us to estimate the singular behavior
and the corresponding exponent A at a given location in the time series. The higher the
order n of the derivative, the higher the order of the polynomial trends removed and the
better the detection of the temporal structure of the local scaling exponents in the signal.
The concept of multifractality is exemplified in Fig. 7a,b for a heartbeat intervals record
from a healthy subject. The heterogeneity of the healthy heartbeat is represented by the
broad range of local Hurst exponents h (colors) present and the complex temporal orga-
nization of the different exponents. The middle and bottom panels illustrate the different
fractal structure of two subsets of the time series characterized by different local Hurst ex-
ponents. The value of the local Hurst exponent for each subset is represented with a shade
of green and red, respectively. The two subsets display different temporal structures which
can be quantified by different fractal dimension D(h). The healthy signal is represented by
a multicolor plot, reflecting multifractal behavior through the variety of values for the local
Hurst exponents. In contrast, fractional Brownian motion (a monofractal signal) is essen-
tially monochromatic indicating that the local Hurst exponent A is the same throughout the

signal [Fig. 7c].

VI. MULTIFRACTALITY IN HEARTBEAT DYNAMICS

We evaluate the local exponent h through the modulus of the maxima values of the

wavelet transform at each point in the time series using the wavelet transform modulus max-
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ima method [65]. However, heartbeat time series contain densely packed, non-isolated singu-
larities which unavoidably affect each other in the time-frequency decomposition. Therefore,
rather than evaluating the distribution of the inherently unstable local singularity exponents
(as shown in color in Fig. 7), we estimate the scaling of an appropriately chosen global mea-
sure — a partition function Z,(a), which is defined as the sum of the ¢'* powers of the
local maxima of the modulus of the wavelet transform coefficients at scale a. For each scale
a these local maxima values are traced along the maxima lines obtained after the wavelet
decomposition of the heartbeat signal (maxima lines appear in bright/white color in Fig. 5).
As analyzing wavelet we use the 3rd derivative of the Gaussian function. For small scales,

we expect
Zy(a) ~a™@ . (6.1)

For certain values of ¢, the exponents 7(¢) have familiar meanings. In particular, 7(2)
is related to the scaling exponent of the Fourier power spectra, S(f) ~ 1/f? as 8 =
2 + 7(2). For positive g, Z,(a) reflects the scaling of the large fluctuations and strong
singularities, while for negative ¢, Z,(a) reflects the scaling of the small fluctuations and
weak singularities [55,57]. Thus, the scaling exponents 7(g) can reveal different aspects of
cardiac dynamics [Fig. 8] . Monofractal signals display a linear 7(¢q) spectrum, 7(¢q) = ¢H —1,
where H is the global Hurst exponent. For multifractal signals, 7(¢) is a nonlinear function:
7(q) = qh(q) — 1, where h(q) = d7(q)/dq is not constant.

A previous obstacle to the determination of the multifractal spectrum of a time series
has been the calculation of the negative moments. Until the application of the wavelet
modulus maxima method, it was not possible to estimate Z,(a) for ¢ < 0. We calculate
7(q) for moments ¢ = —5,4,...,0,...,5 and scales a = 2 x 1.15", 4 = 0,...,41 from 6
hours records obtained from a healthy subject and a subject with congestive heart failure.
In Fig. 8a,b we display the calculated values of Z,(a) for scales ¢ > 8. The top curve
corresponds to ¢ = —5, the middle curve (shown heavy) to ¢ = 0 and the bottom curve to

g = 5. The exponents 7(¢q) are obtained from the slope of the Z,(a) curves in the region
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16 < a < 700, thus eliminating the influence of any residual small scale random noise due
to electrocardiogram signal pre-processing as well as extreme, large scale fluctuations of
the signal. A monofractal signal would correspond to a straight line for 7(g), while for a
multifractal signal 7(¢) is nonlinear. Note the clear differences between the 7(g) curves for
healthy and heart failure records [Fig. 8c|]. The constantly changing curvature of the 7(q)
curves for the healthy records, suggests multifractality. In contrast, 7(¢) is almost linear for
the congestive heart failure subject, indicating monofractality.

We analyze both daytime (12:00 to 18:00) and nighttime (0:00 to 6:00) heartbeat time
series records of healthy subjects, and the daytime records of patients with congestive heart
failure. These data were obtained by Holter monitoring. Our database includes 18 healthy
subjects (13 female and 5 male, with ages between 20 and 50, average 34.3 years), and 12
congestive heart failure subjects (3 female and 9 male, with ages between 22 and 71, average
60.8 years) in sinus rhythm [46].

Next, we obtain the fractal dimension D(h). It is related to 7(¢) through a Legendre

transform,

D(h) =q 2 —7(q)- (6.2)

For all healthy subjects, we find that 7(¢) is a nonlinear function [Fig. 8¢ and Fig. 9a],
which indicates that the heart rate of healthy humans is a multifractal signal. Figure 9b
shows that for healthy subjects, D(h) has nonzero values for a broad range of local Hurst
exponents h. The multifractality of healthy heartbeat dynamics cannot be explained by
activity, as we analyze data from subjects during nocturnal hours. Furthermore, this mul-
tifractal behavior cannot be attributed to sleep-stage transitions, as we find multifractal
features during daytime hours as well [66]. The range of scaling exponents — 0 < h < 0.3 —
with nonzero fractal dimension D(h), suggests that the fluctuations in the healthy heartbeat
dynamics exhibit anti-correlated behavior (h = 1/2 corresponds to uncorrelated behavior
while h > 1/2 corresponds to correlated behavior).

In contrast, we find that heart rate data from subjects with a pathological condition —
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congestive heart failure — show a clear loss of multifractality [Figs. 9a,b]. For the heart
failure subjects, 7(g) is close to linear and D(h) is non-zero only over a very narrow range
of exponents h indicating monofractal behaviour [Fig. 9].

Our results show that, for healthy subjects, local Hurst exponents in the range 0.07 <
h < 0.17 are associated with fractal dimensions close to one. This means that the subsets
characterized by these local exponents are statistically dominant. On the other hand, for
the heart failure subjects, we find that the statistically dominant exponents are confined to
a narrow range of local Hurst exponents centered at h =~ 0.22. These results suggest that
for heart failure the fluctuations are less anti-correlated than for healthy dynamics since the
dominant scaling exponents h are closer to 1/2. Thus, our findings support previous reports
of long-range anti-correlations in healthy heartbeat fluctuations [see caption to Fig. 9] [23].

We present color panels with the local Hurst 4 exponent for 6 healthy individuals [Fig. 10]
and 6 subjects with congestive heart failure [Fig. 11]. Each panel represents 6h long record.
The color code for these panels is the following: with increasing value of A, the spectrum goes
from red to green to blue. A wider range of colors indicates a higher degree of multifractality.
For this reason, records from healthy individuals should be more polychromatic. On the
other hand, records from heart failure patients should be more monochromatic (with a single
color predominating), indicating loss of multifractality. In addition, the color spectrum for
the healthy individuals is shifted to the red and for the heart failure patients is shifted to
the blue. This is in agreement with the results in Fig. 9 where the peak of the multifractal
spectrum D(h) is centered at smaller values of h for the healthy group and at larger values

of h for the heart failure group. These findings may have a potential for diagnosis [67].

VII. MULTIFRACTALITY AND NONLINEARITY

The multifractality of heart beat time series also enables us to quantify the greater
complexity of the healthy dynamics compared to pathological conditions. Power spectrum

and detrended fluctuation analysis define the complexity of heart beat dynamics through its
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scale-free behavior, identifying a single scaling exponent as an index of healthy or pathologic
behavior. Hence, the power spectrum is not able to quantify the greater level of complexity
of the healthy dynamics, reflected in the heterogeneity of the signal. On the other hand, the
multifractal analysis reveals this new level of complexity by the broad range of exponents
necessary to characterize the healthy dynamics [Fig. 9]. Moreover, the change in shape of
the D(h) curve for the heart failure group may provide insights into the alteration of the
cardiac control mechanisms due to this pathology.

To further study the complexity of the healthy dynamics, we perform two tests with
surrogate time series. First, we generate a surrogate time series by shuffling the interbeat
interval increments of a record from a healthy subject. The new signal preserves the dis-
tribution of interbeat interval increments but destroys the long-range correlations among
them. Hence, the signal is a simple random walk, which is characterized by a single Hurst
exponent H = 1/2 and exhibits monofractal behavior [Fig. 12a]. Second, we generate a
surrogate time series by performing a Fourier transform on a record from a healthy subject,
preserving the amplitudes of the Fourier transform but randomizing the phases, and then
performing an inverse Fourier transform. This procedure eliminates nonlinearities, preserv-
ing only the linear features of the original time series. The new surrogate signal has the
same 1/ f behavior in the power spectrum as the original heart beat time series; however it
exhibits monofractal behavior [Fig. 12a]. We repeat this test on a record of a heart failure
subject. In this case, we find a smaller change in the multifractal spectrum [Fig. 12b]. The
results suggest that the healthy heartbeat time series contains important phase correlations
canceled in the surrogate signal by the randomization of the Fourier phases, and that these
correlations are weaker in heart failure subjects. Furthermore, the tests indicate that the
observed multifractality is related to nonlinear features of the healthy heartbeat dynamics.
A number of recent studies have tested for nonlinear and deterministic properties in record-
ings of interbeat intervals [9-11,14,15]. Our results suggest an explicit relation between the
nonlinear features (represented by the Fourier phase interactions) and the multifractality of

healthy cardiac dynamics [Fig. 12].
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VIII. SUMMARY AND OPEN QUESTIONS

The discovery of multifractality in a physiological time series and its breakdown with
pathology is significant from a number of perspectives.

First, contemporary analysis of heartbeat fluctuations, and the study of physiological
time series in general, have emphasized two important, but apparently unconnected proper-
ties: (i) the presence of nonlinearities and (ii) 1/f-behavior (monofractality). The monofrac-
tal hypothesis assumes that the scaling properties of the signal are the same throughout.
Yet the heterogeneous nature of the heartbeat interval time series clearly indicates nonlinear
features. The finding of a multifractal mechanism for heartrate control provides a unifying
connection between nonlinear and fractal properties and, indeed indicates that they are
aspects of a more fundamental type of mechanism. In particular, we show that both the
multifractal character and the nonlinear properties of the signal are encoded in the Fourier
phases [Fig. 12]. The origin and nature of these Fourier phase interactions is an open ques-
tion.

Second, our analysis indicates that the healthy heartbeat is described by a broad range
of scaling exponents h with a well-defined set of bounding parameters, Ay, and hpya,. Fur-
thermore, certain exponents appear to be “forbidden” (h < hpin and h > hyay) and the
exponents present occur with a given structure characterized by the function D(h).

Third, our findings may lead to new diagnostic applications. Further detailed studies on
a larger number of datasets are needed to establish the advantages of given methods com-
pared to others and to find optimal combinations of methods for diagnostic and prognostic
purposes.

Fourth, our analysis is based on a “microscopic” approach which can identify the statis-
tical properties of the self-affine cascade of heartbeat fluctuations at different scales [Fig. 5].
Our finding of multifractality quantifies the complex dynamics of this cascade and suggests
that a multiplicative mechanism might be the origin of this phenomena. The detailed fea-

tures of the cascades and how they relate to other processes with cascades (e.g., turbulence)
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remain to be addressed.

On a more general level, our approach provides a way of testing a broad range of 1/f-type
signals to see if they represent multifractal or monofractal processes. As such, these findings
should be of interest to a very wide audience given the historic interest in elucidating the
nature of different types of 1/f noise.

Finally, from a physiological perspective, the detection of robust multifractal scaling in
the heart rate dynamics is of interest because our findings raise the intriguing possibility
that the control mechanisms regulating the heartbeat interact as part of a coupled cascade
of feedback loops in a system operating far from equilibrium — an extraordinarily com-
plex behavior which in physical systems has been connected with turbulence and related
multiscale phenomena [68-70]. Furthermore, the present results indicate that the healthy
heartbeat is even more complex than previously suspected, posing a challenge to ongoing
efforts to develop realistic models of the control of heart rate and other processes under

neuroautonomic regulation [18,33,71-73].
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FIG. 1. Consecutive heartbeat intervals are plotted vs beat number for 6 hours recorded from
the same healthy subject during: (a) wake period: 12pm to 6pm and (b) sleep period: 12am to

6am. (Note that there are fewer interbeat intervals during sleep due to the larger average of the

interbeat intervals, i.e. slower heart rate.)
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FIG. 2. (top) Power spectrum from 6 hour records of interbeat intervals for a healthy subject
during day and night. (bottom) We plot the local exponent 3 calculated from the power spectrum
for 6 healthy subjects. The local value of 8 shows a persistent drift, so no true scaling exists. This
is not surprising, having in mind the non-stationarity of the signals. The horizontal line shows the

value of the exponent obtained from a least square fit to the data.
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FIG. 3. (top) Power spectrum of the interbeat interval increments from 6h record for the same
healthy subject as in Fig. 2. Error bars are calculated as the standard deviation of the power
spectrum values for frequencies within the binning interval. (bottom)The local exponent 3; for
the power spectrum of the increments for the same 6 healthy subjects as in Fig. 2. Note that
the exponent B; fluctuates around an average value close to one, so true scaling does exist. The
horizontal line shows the value of 8; obtained from a least square fit. Note however, that the

difference between wake and sleep dynamics cannot be observed from the power spectra.

28



F(n)

F(n)

10

10

10

10

10

10

10

10

10

-1

10

(a) Healthy

10000

s slope=0.8 2
©]
[} © M ]
A“AM“A
10 100 1000
n
(c) Heart Failure 1
slope=1.2

29

1000

10000



FIG. 4. Plots of log F'(n) vs. logn for 6h wake (open circles) and sleep records (filled triangles)
of (a) one typical healthy subject; (b) one cosmonaut (during orbital flight); and (c) one patient with
congestive heart failure. Note the systematic lower exponent for the sleep phase (filled triangles),
indicating stronger anticorrelations. (d) As a control, we reshuffle and integrate the interbeat
increments from the wake (open squares) and sleep data (solid squares) of the healthy subject
presented in (a). We find a Brownian noise scaling over all time scales for both wake and sleep

phases with an exponent @ = 1.5, as one expects for random walk-like fluctuations.
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FIG. 5. Color coded wavelet analysis of a heartbeat interval signal. The z-axis represents time
(= 1700 beats) and the y-axis indicates the scale of the wavelet used (a = 1,2,...,80; i.e. = from 5
seconds to 5 minutes) with large scales at the top. This wavelet decomposition reveals a self-similar
fractal structure in the healthy cardiac dynamics — a magnification of the central portion of the
top panel with 200 beats on the z-axis and wavelet scale a = 1,2, ..., 20 on the y-axis shows similar

branching patterns (lower panel).
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FIG. 6. Local Hurst exponents h for a multifractal signal (top panel) and the decomposition of
this signal into subsets (subsequent panels) with each local Hurst exponent indicated by the color
and each fractal dimension indicated by the density of vertical bars. The x-axis represents time

and the vertical bars (y-axis) indicate local Hurst exponents.
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FIG. 7. (a) Consecutive heartbeat intervals measured in seconds are plotted vs beat number
from approximately 3 hours record of a representative healthy subject. The time series exhibits
very irregular and nonstationary behavior. (b) The top panel displays in color the local Hurst
exponents calculated for the same 3 hours record shown in (a). The other two panels represent
two subsets of the heartbeat interval time series in (a) each with a local Hurst exponent (indicated
by the color) and with a different fractal dimension (indicated by the density of the vertical bars).
(c) The panel displays in color the local Hurst exponents calculated for a monofractal signal —
fractional Brownian motion with H = 0.6. The homogeneity of the signal is represented by the
nearly monochromatic appearance of the signal which indicates that the local Hurst exponent £ is

the same throughout the signal and identical to the global Hurst exponent H.
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FIG. 8. Scaling of the partition function Z;(a) with scale a obtained from daytime records
consisting of &~ 25,000 beats for (a) a healthy subject and (b) a subject with congestive heart

failure. (c) Multifractal spectrum 7(g) for the individual records in (a) and (b).
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FIG. 9. (a) Multifractal spectrum 7(q) of the group averages for daytime and nighttime records
for 18 healthy subjects and for 12 patients with congestive heart failure. The results show mul-
tifractal behavior for the healthy group and distinct change in this behavior for the heart failure
group. (b) Fractal dimensions D(h) obtained through a Legendre transform from the group aver-
aged 7(q) spectra of (a). The shape of D(h) for the individual records and for the group average
is broad (Ah = 0.25), indicating multifractal behavior. On the other hand, D(h) for the heart
failure group is very narrow (Ah = 0.05), indicating loss of multifractality. The different form of
D(h) for the heart failure group may reflect perturbation of the cardiac neuroautonomic control
mechanisms associated with this pathology. Note, that for ¢ = 2 the heartbeat fluctuations of
healthy subjects are characterized by h = 0.1, which corresponds to a = 1.1 for the interbeat

interval series obtained from DFA analysis (Section III).

39



FIG. 10. Panels obtained from healthy individuals illustrating how the local Hurst exponent h

(vertical color bars) changes with time (x-axis). Each panel represents a 6h record. A broad range

of colors indicates broad multifractal spectrum.
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FIG. 11. Panels obtained from subjects with congestive heart failure illustrating how the local

Each panel represents a 6h

Hurst exponent h (vertical color bars) changes with time (x-axis).

record. An almost monochromatic appearance indicates narrow multifractal spectrum, i.e. loss of

multifractality.
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FIG. 12. (a) The fractal dimensions D(h) for a 6h daytime record of a healthy subject. After
reshuffling and integrating the increments in this interbeat interval time series, so that all correla-
tions are lost but the distribution is preserved, we obtain monofractal behavior — a very narrow
point-like spectrum centered at h = H = 1/2. Such behavior corresponds to a simple random
walk. A different test, in which the 1/ f-scaling of the heart beat signal is preserved but the Fourier
phases are randomized (i.e., nonlinearities are eliminated) leads again to a monofractal spectrum
centered at h =~ 0.07, since the linear correlations were preserved. These tests indicate that the
observed multifractality is related to nonlinear features of the healthy heart beat dynamics rather
than to the ordering or the distribution of the interbeat intervals in the time series. (b) The frac-
tal dimensions D(h) for a 6h daytime record of a heart failure subject. The narrow multifractal

spectrum indicates loss of multifractal complexity and reduction of nonlinearities with pathology.

43



